生命是什么
1、大家最近讨论较多的另一个话题是所谓的“奇点”,即有些未来学家预测,未来电脑智能会和人脑智能汇合,或许人类进化的下一步就是机器人。这种说法很有意思,但进化的未来到底是什么,没有人说得清楚。从某个角度来说,进化已经失去了其原有的意义。进化论讲的是适者生存,判断谁是适者的标准就是其后代会更多,但是,现在的社会精英会有更多的后代吗?成功人士会有100个孩子?现在人类的预期寿命比原来大大提高,这一是靠公共卫生的改善,二是靠抗生素,当然,营养的改善也有一定的作用。我们或许已经从适者生存变成了人人平等,生存能力差的人现在有了同等的生存机会。这对历史进程的影响是极其深远的。
2、源自:网络 | 主播:孟飞Phoenix
3、人工智能可能是某种不同寻常的生命。图片来源:SciencePhotoLibrary
4、好科普难写,中文世界的原创科普可以达到英文优秀科普著作高度的更少。我个人认为,立铭的作品是中文科普世界里凤毛麟角的存在。这部书的架构和逻辑在英文科普著作里也少见,可见立铭对此做过仔细推敲琢磨。好的科普书重要的作用不是科普知识点,因为知识早晚变得陈旧,重要的是普及科学的思维和判断方式。这一点读者应能从立铭讲故事的字里行间体会到,他总是努力地给读者展现精彩科学发现背后的内在逻辑,从推理到实验验证,丝丝入扣。
5、2016年雨果奖得主、《北京折叠》作者郝景芳对他的形容最贴切,所谓“带着温暖的智者之光”。
6、英语美文朗读《生命中最好的东西都是免费的》
7、我想不出比这更优雅的解决方案了:这些线性碳基聚合物的多种布局既能生成化学性质稳定的信息储存装置,又能产生高度多样化的化学活动。我发现,生命的化学的这一面既极其简单,又卓越非凡。生命体将复杂的高分子化学与线性信息存储相结合的方式实在令人叹服,我推测,这个原理不仅是地球生命体的核心,也很可能是宇宙中任何地方的生命的核心构造。
8、每当我感慨人类这些辉煌成就的时候,就常常被一个问题困扰,人类的生命是完美无缺的吗?当人们尽情展现人类壮丽的生命的时候,又不得不面对这样一个现实,人类生命并非完美无缺,事实上,健全与残缺一起,才构成了人类生命的全部。
9、生命体当然是要降低自身的熵值,但这不总是成功的:有时因为自身稳态被破坏,比如衰老;有时因为无法完全抵抗外界的高熵压力。熵变主要应该是面向代谢及调节代谢的过程:物质的,能量的,信息的。
10、预测外星生命也是一个棘手的任务。大多数的研究者,包括爱丁堡大学的英国天体生物学中心的CharlesCockell和他的同事们,都在通过地球上可在极端环境下生存的微生物来研究外星生命。他们认为,外星生命生活的环境可能会与我们迥然不同,但它们仍然很可能与地球上的生命共同拥有着生命的某种关键特征。(生命是什么)。
11、http://www.bbc.com/earth/story/20170101-there-are-over-100-definitions-for-life-and-all-are-wrong
12、病毒是个很好的例子。它们是有基因组的化学实体,有的基于DNA,有的基于RNA,包含了制造包裹每个病毒的蛋白质外衣所需的基因。病毒可以通过自然选择进化,这一点符合马勒的定义,但别的方面就不那么清晰了。尤其是从严格意义上说,病毒不能自我繁殖。相反,它们繁殖的唯一途径是感染生物体的细胞,劫持被感染细胞的新陈代谢。
13、在薛定谔的时代,科学家还没有完全理解遗传到底是怎么回事。人们还不知道DNA是长链条双螺旋结构,也不知道DNA的内部组成成分,不知道遗传物质是核酸。当时的技术条件仅仅能识别染色体。薛定谔注意到,生物学家会用X射线引发突变。他进一步发现,X射线能够影响到的原子数量很少,但为什么却会引起这么大的影响?X射线照过去,就会让果蝇要么长不出翅膀,要么没有眼睛。薛定谔推测,原子本身不可能带有太多的信息,真正的遗传密码是在基因之中。一个基因包含原子数量之少是无法克服涨落效应的,但是,遗传性状的稳定性来自于基因组的结构。物理学家熟悉的是晶体的结构,而生命的密码建立在非晶体的结构之上。
14、再现复杂性同时也解决了像骡子(一种由公驴和母马交配诞下的无生育能力的后代)这类生物所面对的尴尬:它们显然是生命,但由于无法生育因此欠缺了一条关键的生命特征:自我复制。
15、我的第二个原则是,生命形态是有边界的有形实体。它们与身外的环境分离,但又有互动沟通。这个原则来自细胞的概念,细胞是能清楚体现生命所有标志性特征的最简单的实体。这个原则强调了生命的实体性,将计算机程序和文化实体排除在了生命形式之外,哪怕它们似乎也可以进化。
16、Nature|doi:1038/d41586-018-06034-8
17、如果直接把我们所了解的关于地球生物的知识套用到寻找外星生命的过程中,可能会产生令人疑惑的结果。例如NASA——他们原本认为自己对生命的定义已经相当不错了,但1976年他们就被打脸过:当年,NASA发射的“海盗一号”成功着陆火星,并进行了三项用于测试生命的三个实验。其中一个实验似乎证明了火星上有生命——他们观测到火星土壤的二氧化碳浓度较高,因此认为这说明有微生物在这颗红色星球上生活和呼吸。
18、但是这些化学物质是没有生命的。只有它们开始进行一些特别的活动,例如排泄,或者自相残杀时,我们才会认为它们是生命。那这些化学物质需要什么条件才能一跃成为生命呢?Bada的答案出人意料。
19、数学家彭罗斯(RogerPenrose)对这场思维实验的评价是:“我认为薛定谔(在写《生命是什么?》的时候)已经考虑到这个问题了。”对于某种遗传性状(如欧洲哈布斯堡王朝成员突出的下颌),薛定谔想知道那些起作用的等位基因何以“几百年来都没有受到热运动无序性的干扰?”
20、迷信认为生来就注定的贫富、寿数等:天命。命相(xiàng )。命运(迷信指生死、贫富和一切遭遇;喻发展变化的趋向,如“人民一定能掌握自己的命命”)。
21、这个解释就是,这层膜实在是太薄太薄了!厚度还不到10纳米,远远低于光学成像的理论极限分辨率200纳米。人类科学家再雕琢自己的光学显微镜镜片,也不可能看到这层膜的样子(胡克在软木标本中看到的蜂巢结构其实是细胞壁,一种植物细胞特有的坚硬外壳)。看都看不见的东西,天知道它存不存在?而当生物学家瞪大眼睛反复看,都没有看到传说中这层膜的样子以后,自然而然会有一批人转而开始考虑其他的可能性。比如,直到20世纪初,仍然有不少生物学家认为这层膜压根就是不存在的,细胞内的物质像胶水一样黏合在一起才不会破碎和稀释。这个解释现在看起来几乎不言而喻是错误的,就算是每一个细胞内的物质可以按照这种方式聚集而不散开,怎么才能防止细胞和细胞之间的“胶水”黏在一起?这种解释仍然离不开一个在物理化学性质上截然不同的“分离之墙”。归根结底,生物学家们是败给了自己“眼见为实”的思维定势。
22、“信息分子的错误复制可能是生命发生和演化的起源,这也因此造成了非生物化学向生物化学的转变,”Bada说。复制,特别是错误复制导致了具有不同能力的“后代”的产生,这些分子后代开始为了生存而互相竞争。
23、作者:冰心(谢婉莹,1900年10月5日-1999年2月28日),福建长乐人,中国民主促进会成员、诗人、现代作家、翻译家、社会活动家,被称为"世纪老人"。1919年8月,冰心在《晨报》上发表了第一篇散文《二十一日听审的感想》和第一篇小说《两个家庭》。1923年,陆续发表总名为《寄小读者》的通讯散文,成为中国儿童文学的奠基之作。1946年,在日本被东京大学聘为第一位外籍女讲师。1999年2月28日21时12分,于北京逝世,享年99岁。
24、这是怎样的一种生命力啊!一个对事业执著热爱的人,即使是残缺的生命,也能爆发出令人难以置信的勇气和力量。没有霍金,人们对黑洞的认识也许还要推迟很多年,没有哈森迈尔,地层深处的很多奥秘也许还是未知的。
25、从生命的起源,到人类对自由意志的追寻,作者的文本写作一气呵成。这也是王立铭作品中最突出的特点,坚持以问题为驱动,层层递进,丝丝入扣,从而构建一个完整的封闭式的逻辑链条。
26、为了恰当地定义生命,或许我们还是需要寻找外星生命。但是讽刺的是,缺乏对于生命的明确定义,反过来又使发现外星生命变得更加困难。想象一下,如果在21世纪20年代,新的火星探测器登上了火星,却从一个火星人身边直直地开走了,只是因为我们无法辨认出它是有生命的。
27、引证:老舍《二马》第三段十五:“完全积极,至少也叫国家抖抖精神,叫生命多几分乐趣。”
28、我们知道,能量和自我复制是生命从混乱无序的环境中萌发并万世长青的两个基本条件。生命现象想要存在,必须在局部蓄积起足够浓度的能量,然后用它驱动某种能够携带遗传信息的生物大分子(例如RNA)的自我复制。那么可想而知,如果没有一层物理屏障的存在,能量分子和遗传物质哪怕能够偶然出现,也会像在原始海洋里滴一滴墨汁一样,迅速稀释到无踪无迹。或者反过来说,从46亿年前地球形成开始,能量分子和遗传物质可能已经自发出现过千千万万次。但是必须再耐心等待10亿年,直到第一个原始细胞出现,为能量分子和遗传物质构造起“分离之墙”,并且从那一刻开始,始终包裹在每一个细胞和它们的后代周围,地球生命才真正有可能告别昙花一现的化学反应现象,稳定地存活下来,利用能量驱动生命活动,利用自我复制适应地球环境,开枝散叶一直到今天。
29、引证:《二十年目睹之怪现状》第八十回:“生命注定的何必去寻。”
30、有机体究竟是如何挖掘这种负熵的?薛定谔无法给出答案。他只能给出如下建议:在生命系统中,“我们必须努力找到一种新的物理定律”。如今看来,这种极端的解决方式已经不必要了。
31、引证:巴金《一场挽救生命的战斗》:“不要忘记了,党是我的第一条生命。”
32、诺贝尔奖得主、奥地利物理学家薛定谔在其1944年的著作《生命是什么?》(WhatIsLife?)中,提出了一个更加具体但同书名一样发人深省的问题:“是什么让生命系统似乎与已知的物理学定律相悖?”薛定谔当时给出的答案现在看来颇具预见性。他指出,生命的特征在于“密码本”,这个密码本不但可以指导细胞组织和遗传,还能让有机体摆脱热力学第二定律。
33、遗憾的是,“不管是思辩式的费米悖论和德雷克公式,还是实践中的SETI(SETI@home是一项利用全球联网的计算机共同搜寻地外文明的科学实验计划)和各种主动广播,都还没有提供任何线索”。那么,当下可行的办法就是回望地球的历史,回望人类自身是如何演化出现,并成为今天的样子的。
34、在薛定谔之后,生命科学出现了两次革命。一是分子生物学的革命,标志是DNA的发现。分子生物学的出现,受到薛定谔等物理学家的极大影响。同时,物理学还为生物学提供了X射线、磁共振、电子显微镜、高速离心机等工具。二是基因组学,就是我们说的测序,这是数学、计算机科学和生物学的交叉。分子生物学使得我们像了解一辆汽车的零部件一样,对细胞、染色体、DNA等有了透彻的了解。基因组学则是把“生命天书”拷贝了下来。这好比是汽车的修理手册,出来什么故障,怎么修理,这本书上都有。甚至像我们为什么会衰老,怎样防止人们衰老这些问题的答案,其实都在这本天书里面,但是,我们对这本天书还没有完全读懂。
35、拥有通过自然选择进化的能力,这是我用来定义生命的第一个原则。正如我在自然选择那一章中所说的,它取决于三个基本特征。为了进化,生物体必须能够繁殖,必须有一套遗传系统,并且,遗传系统必须表现出变异性。任何具有这些特征的实体都可以且必将进化。
36、同我们知道的所有生命一样,病毒携带了DNA或RNA,因此一些人认为病毒应当归属于生命,还有些人甚至声称病毒带有让我们了解生命起源的线索。如果是这样的话,生命似乎便不再是非黑即白的实体,而更像一群物体模糊的集合,没有明确的“活着”或“死亡”的边界。
37、我的第三个原则是,生命体是化学、物理和信息机器。它们构建自身的新陈代谢,并以此维持自身的存续、成长和繁殖。这些生命体通过管理信息来自我协调和调控,以让生命体作为有目的性的整体来运作。
38、但是,哈森迈尔没有放弃生命,没有放弃探索生命意义的理想。他在朋友的帮助下,制造了一艘只能坐一个人的“洞穴号”潜水艇,开始孤身一人在地下千米深处、罕有生命踪迹的洞穴、暗河和湖泊里漫游。为探寻人们未曾到过的领域,他充满热情地工作着。
39、几年后,激进的英裔印度籍生物学家J.B.S.哈尔丹也写了一本题为《生命是什么》的书,并在书中宣称:“我不会回答这个问题。事实上,我很怀疑这个问题会不会有完整的答案。”他把活着的感觉与我们对颜色、痛苦或努力的感知相比较,以示“我们无法用别的说法来描述它们”。我对哈尔丹的说法深有共鸣,但这也让我想起了美国最高法院法官波特在1964年定义色情时所说的话:“我看到就知道了。”
40、斑马并不能告诉我们生命究竟是什么。图片来源:RobertHarding/Alamy
41、“生命的外壳:细胞膜”一文以及插图,节选自王立铭新作《生命是什么》。《知识分子》获授权发表。
42、人工生命的研究可能最终会应用到更广泛的范围,甚至制造出与我们的期望大相径庭的生命。这类研究可能会帮助我们重新认识生命的定义。但是目前的研究者还没有走到这个阶段,Bedau说:“如何定义所有的生命形式暂时还不是让研究者操心的课题。他们可能会在喝啤酒的时候聊聊这个问题,但并不会把探究这个问题当作他们的工作。”
43、这个设想一举解决了关于“分离之墙”的两个问题。大家都知道“油水不相容”,这是因为水分子带有强烈的极性,它的氧原子上带有强烈的负电荷,氢原子上则带有正电荷,因此水分子之间能够通过正负电荷的吸引形成稳定的结构。与之相反,大多数脂类分子的电荷分布很均匀,一旦放入水中,不仅不能和水分子形成电荷吸引,反而还会破坏水分子之间的稳定关系,就像把玻璃弹珠扔进一堆方方正正的乐高玩具一样不合时宜。因此脂肪分子不溶于水,而且在水中还会自发聚集成团,尽可能减少表面积,减少暴露在水分子面前的机会。这样一来,由脂类分子构成的膜当然就不会在水中分崩离析,而且天然地形成致密的结构,包裹住细胞内的生命物质。
44、如果不找到其他的生命形式,我们就无法确定我们现在所认为的生命必需条件是否通用。制造人工生命或许可以提供一个新的方式去探索新的生命形态,但是至少在短期来看,任何在电脑中被凭空捏造出的生命都可能会受到我们现有的对于生命系统的偏见影响。
45、薛定谔是一位物理学家。他希望从物理学的角度去理解生命是什么。为什么薛定谔认为物理学能够对理解生命的本质提供独特的启发?这要从什么是物理学讲起。
46、说到生命,也是一个道理。也许我们认为生命所必需的特质,实际上只是地球上生命所独有的特质,毕竟从细菌到狮子都是从同一个祖先进化而来,这意味着在宇宙生命的图表里我们只有一个数据点。
47、《生命是什么?》所提出的问题反映了当时物理学家和化学家对分子世界的看法:分子完全受到统计行为的支配。麦克斯韦(JamesClerkMaxwell)和玻尔兹曼(LudwigBoltzmann)的经典分子物理学认为原子运动是随机的。那些精确阐明温度、压力和气体体积之间关系的物理定律,其实是对无数原子平均行为的总结。
48、生命是什么?关于这个问题,不同的人给出了不同的回答。信徒以为生命是上帝的作品。文学家以为生命是情感的载体。化学家认为生命是一系列化学反应,早期的生物学家并不追问生命的本质,他们关心的是生命是如何进化的。如今,分子生物学家会把生命的基石理解为一系列基因和蛋白组。
49、而在过去的一百年间,定义生命甚至变得更加困难了。一直到19世纪,主流说法都认为,生命区别于非生命的因素,就在于无形的“灵魂”或是“精神”而不同。但目前科学界已经抛弃了这一理论,因为有更为科学的观点取代了它。例如,美国航空航天局(NASA)就把生命定义为一种“符合达尔文进化理论并且可以自我维持的化学体系”。
50、经典的“临界”个例就是病毒。“他们没有细胞结构,不进行代谢,在没有入侵细胞的情况下呈现惰性,所以有很多人(包括很多科学家)断定病毒不是生命。”法国巴斯德研究院的微生物学家PatrickForterre说。
51、和宏观生命一样,细胞这种微观生命也同样是有清晰边界的。它们被一层仅有几纳米厚的脂类分子薄膜严密地包裹起来,薄膜内部是生机勃勃的生命活动,外面则是危险冷漠的外在世界。实际上,考虑到地球生命都是由数量不等的细胞构成的,我们完全可以认为这层薄膜才是生命和地球环境的边界。
52、对于地球生命来说,在生命体和周围环境之间存在着不言而喻的清晰界限。皮肤毛发包裹着人类的躯体,水里的鱼虾顶着闪闪发光的鳞片或者厚厚的硬壳,树木的躯干上也裹着斑驳嶙峋的树皮。很难想象会存在一种生命,和环境之间有着缓慢过渡的边界。就像我们看不到人体的内脏飞得满房间都是,也不会看到树木若有如无的魅影笼罩成了一片树林。
53、这一切都表明,生物体有一个分级的渐变光谱,从完全依赖他者的病毒,到更为自给自足的蓝藻、古细菌和其他众多植物。我坚持认为这些不同的形态都是有生命的,因为它们都是自我导向的有形实体,可以通过自然选择来进化,虽然它们也在不同程度上依赖于其他生物体。
54、既然寻找和制造新的生命并不需要一个通用的定义,那这是不是意味着科学家可以停止思考生命的定义了?科罗拉多大学的哲学家CarolCleland认为答案是肯定的,至少暂时是这样的。
55、这是个大问题。我在学校得到的答案是生物必考题MRSGREN清单之类的东西——生物体会表现出如下特征:运动(movement)、呼吸(respiration)、应激反应(sensitivity)、生长(growth)、繁殖(reproduction)、排泄(excretion)和吸收营养(nutrition)。
56、然而让人跌破眼镜的是,从英国科学家罗伯特·胡克(RobertHooke)在显微镜下观察到植物软木标本里一个个蜂巢状的微小结构并于1665年提出“细胞”的概念,到1972年辛格(SeymourSinger)和尼克尔森(GarthNicolson)提出目前被广为接受的细胞膜物质解释“流动镶嵌模型”,足足用了三百多年的时间!
57、 “为了寻找可能超出我们目前定义的东西,我们需要保持开放的心态。”Cockell说。
58、[1]罗夏墨迹测验:一种以图片为媒介的心理学测验。——译者注
59、演化的方向虽然不是从低级到高级、从简单到复杂,但对我们今天的人类而言,演化史上最匪夷所思的一幕最终上演了,那就是智慧。从知觉到学习记忆,从合作到语言,直至自我意识。
60、事实上,现在普遍认为,观察者当时发现的二氧化碳释放只是非生物的化学氧化反应,并不是当初激动人心的“似乎发现生命活动”的现象。
61、什么是生命,什么不是?我们大多数人可能觉得这个问题并不需要很复杂的思考,很简单啊,人是生命而石头不是。
62、“我认为,‘生命’从根本上就不会有一个精准的定义,但是我们依然有一些可以瞄准的目标。”在南丹麦大学研究人工生命的SteenRasmussen说。来自世界各地的团队都在研究PMC模型中的各个单独组分,并把它们放入系统以研究其性质。但是目前为止,没人可以将这些组分装配起来,成为一个有综合功能的生命形式。
63、动植物的生活能力:生命。救命。逃命。拼命。命脉。性命。相依为命。
64、长久以来,生态学家一直很赞成这种深层关联、相互关联的生命观。这个观点最早源于19世纪初的探险家、自然学家亚历山大·冯·洪堡的思想,他认为所有生命都被一个互相连接的网络关联在一起。这种相互关联性是生命的核心,虽然这么说可能让人意外,但应该能让我们有充分的理由停下来,更深入地思考人类活动对生态世界里的其他生命体造成了怎样重大的影响。
65、现代生物技术的发展一方面让人类更接近生命的真相,同时,它也在试图开始介入甚至主导演化的进程,从而改写人类自己的命运,比如基因编辑、记忆移植……
66、宇宙万物千变万化,自然界里绚丽多彩,不外乎是生物和非生物之分。从现代科学的角度来看,生命只是物质运动的一种形态,它只是由蛋白质、核酸、脂类等生物分子组成的物质系统而己,远没有古人对生命的理解那么玄妙。
67、1933年,薛定谔因在量子力学方面的杰出成就荣膺诺贝尔奖,不过这并不是插手生物学的通行证,薛定谔此前除了对视觉生理学有过涉猎之外,并未表现出对生物学的浓厚兴趣。可以说,薛定谔的这种天真既是这本书的力量来源,也是这本书的缺陷所在。
68、生命不仅仅是我们所理解的植物或者动物,生命可以是任何物质,生命也可以是虚无缥缈的灵魂。任何物质这个概念,包括实体物质和虚体物质,当然也包括灵魂。
69、所以,当你感冒时,病毒会进入你的鼻腔细胞,利用它们的酶和原料来反复多次地繁殖病毒。随着病毒大量滋生,鼻子里受感染的细胞破裂并释放出了成千上万的感冒病毒。这些新的病毒会感染附近的细胞,并进入你的血液,继而感染其他地方的细胞。这是一种非常有效的策略,可以让病毒持续存在,但这也意味着病毒不能脱离其宿主的细胞环境单独运作。换句话说,它完全依赖于另一个生命体。你差不多可以这样说:在宿主细胞中具有化学活性和繁殖能力时,病毒是活着的,但当它在细胞外作为化学惰性病毒存在时,它又不算是活着的,病毒就在这两种状态间不断切换。
70、为此,薛定谔援引了另一位前量子物理学家德尔布吕克(MaxDelbrück)的实验,德尔布吕克通过高能辐射诱导基因突变,估算出基因的大小约为原子的1000倍。薛定谔认为这种尺寸过小,无法使其在统计波动的影响下继续保持这种“规律活动”(持久的遗传)。
71、实际上,这样一种细胞膜不光是逻辑上容易理解、实验上得到了证明,它还非常容易形成。这最后一点对于解释地球生命的起源——也许包括宇宙许多生命形态的起源——非常重要。只要把一些具备类似油水兼具性质的分子放在水里,它们可以自发形成一层薄膜,包裹成一个空心球的形状。也就是说,只要在原始海洋里的某个地方,不管是终日喷涌的海底火山,还是狂风暴雨的海洋表面,某个化学反应能够批量制造出脂类分子,最早的细胞结构就可以自发形成,剩下的问题无非是怎么用这种结构把能量分子以及遗传物质包裹起来而已。
72、物质、能量、复制是构成地球生命最基本的三个要素,可至此,演化的历史已经过去了将近10亿年,第一个独立的细胞还没有诞生。原因是,缺少了能把能量分子和遗传物质包裹起来的结构,也就是细胞膜,王立铭称之为“分离之墙”。一层小小的薄膜勾连出科学家持续300多年的研究历史,这大概是科学探索曲折反复最经典的案例之一了。
73、“生命的定义也可能阻碍我们寻找新生命,”Cleland说,“我们需要摆脱现有的概念,这样才能有一个开放的态度去寻找我们不了解的生命。”
74、科学研究在带来新知的同时总是带来新的未知。曾经被生命科学吸引的物理学天才费曼戏言,在生物学领域,随便一个问题我们都没有答案,而物理学则是你要花相当多的时间才能找到没有解决的重要问题。这样的现状并没有改变太多,而立铭之后讨论的生命科学的已知和未知也会让读者浮想联翩,我想这部分对于有抱负的下一代科学家会有相当的吸引力。所以,读完本书,你可能找不到“生命是什么?”的答案,但你对“生命是什么?”这一问题的理解定会有质的提升。
75、朊病毒几乎被认为是“生命”。图片来源:AlfredPasieka/SciencePhotoLibrary
76、到了1985年,关于莫奇森陨石的研究又一次震动了科学界。美国人大卫·蒂莫(DavidDeamer)证明,从陨石上提取出来的脂类分子也可以自发形成类似于细胞膜的结构。如果说在此之前,借由米勒-尤里实验和莫奇森陨石的研究,科学家们已经不怀疑生命物质出现在宇宙中是一件平淡无奇的事情。那么蒂莫的发现说明,就连第一个真正的生命——细胞——的出现可能都没有人类想的那样复杂,它同样可能是一件自然而然、平淡无奇的小事件!
77、病毒应该被视为生命么?图片来源:Jezper/Alamy